?大約5.4億至5.15億年前的寒武紀(jì)初期,地球生命發(fā)生了前所未有的快速演化,被稱為“寒武紀(jì)生命大爆發(fā)”。為何復(fù)雜的多門類動(dòng)物會(huì)在這一時(shí)期“突然”出現(xiàn)?學(xué)界普遍認(rèn)為,營養(yǎng)元素(如磷)的供應(yīng)和大氣氧氣水平的上升是兩個(gè)關(guān)鍵的環(huán)境條件。然而,什么樣的全球性構(gòu)造事件觸發(fā)了這些環(huán)境劇變一直是一個(gè)懸而未決的科學(xué)問題。雖然前人提出岡瓦納大陸聚合造山作用驅(qū)動(dòng)的風(fēng)化營養(yǎng)鹽輸入和海水化學(xué)變化是寒武紀(jì)生命大爆發(fā)的重要機(jī)制,但主要的陸陸碰撞造山期(600Ma之前)要遠(yuǎn)早于寒武紀(jì)生命大爆發(fā)的時(shí)間。值得注意的是,岡瓦納大陸邊緣活躍的俯沖作用和大陸弧火山會(huì)促使高效的深部二氧化碳脫氣和地幔物質(zhì)抬升暴露,進(jìn)而產(chǎn)生更強(qiáng)的風(fēng)化-營養(yǎng)鹽-海洋化學(xué)之間的反饋機(jī)制。鑒于該過程與寒武紀(jì)大爆發(fā)時(shí)間重疊,其極有可能是寒武紀(jì)生命大爆發(fā)的重要驅(qū)動(dòng)力,但目前仍缺乏關(guān)鍵的地球化學(xué)證據(jù)來建立二者之間的因果聯(lián)系。
?鑒于此,在廣州地化所彭平安院士指導(dǎo)下,由廣州地化所田輝研究員和地化所樊海峰研究員共同主導(dǎo),合肥工業(yè)大學(xué)、德國邁因茨大學(xué)、美國邁阿密大學(xué)、荷蘭烏得勒支大學(xué)等國內(nèi)外多家研究機(jī)構(gòu)參與的聯(lián)合研究團(tuán)隊(duì),提出了地球深淺聯(lián)動(dòng)驅(qū)動(dòng)的寒武紀(jì)生命大爆發(fā)新模式。
?研究團(tuán)隊(duì)選取了華南揚(yáng)子區(qū)塊兩個(gè)鉆井(ZK4803和ZK4411)中保存完好的碳酸鹽巖和黑色頁巖/硅質(zhì)巖樣品,綜合新獲取的鋰(Li)和鋨(Os)同位素和已發(fā)表的鍶(Sr)同位素?cái)?shù)據(jù),發(fā)現(xiàn)在5.4億至5.25億年前海水的上述地球化學(xué)指標(biāo)出現(xiàn)了同步的顯著?“負(fù)漂移”?,即Os和Sr同位素比值變輕,同時(shí)Li同位素(δ?Li)值急劇降低(圖1)。Os-Sr同位素的負(fù)漂移指示了大量來自地幔的年輕非放射成因物質(zhì)被風(fēng)化并輸入海洋。Li同位素的負(fù)漂移則指示當(dāng)時(shí)正處于強(qiáng)烈的一致性風(fēng)化階段,巖石被快速溶解,侵蝕率極高。據(jù)此,研究團(tuán)隊(duì)推斷在這一時(shí)期發(fā)生了大陸弧火山驅(qū)動(dòng)的氣候變暖和新鮮火山巖石的快速侵蝕作用。
?基于上述新發(fā)現(xiàn)并綜合前人成果,研究團(tuán)隊(duì)創(chuàng)新性提出了“構(gòu)造-風(fēng)化-生命”三階段演化模型,清晰地勾勒出了該時(shí)期從構(gòu)造活動(dòng)到生命爆發(fā)的關(guān)聯(lián)演化過程(圖2):
(1)早期地殼增厚階段(約550–540 Ma):俯沖作用導(dǎo)致大陸地殼增厚和氣候變暖,啟動(dòng)了強(qiáng)烈的風(fēng)化作用。
(2)關(guān)鍵營養(yǎng)(磷)輸入和增氧階段(約540–525 Ma):大陸弧火山活動(dòng)進(jìn)入高峰,富含磷等營養(yǎng)元素的新鮮火山巖被快速侵蝕,向海洋輸送了前所未有的磷,極大促進(jìn)了海洋生產(chǎn)力,隨之而來的有機(jī)碳埋藏則導(dǎo)致大氣氧含量上升。
(3)氧氣鞏固與生命輻射階段(約525–515 Ma):風(fēng)化模式轉(zhuǎn)變?yōu)橐孕纬烧惩翞橹鞯牟灰恢嘛L(fēng)化。粘土礦物促進(jìn)有機(jī)質(zhì)高效埋藏,進(jìn)一步增進(jìn)了大氣氧積累,最終滿足了大型、具骨骼動(dòng)物演化的氧氣需求,直接催生了寒武紀(jì)生命大爆發(fā)。
這項(xiàng)研究不僅解答了“什么構(gòu)造過程驅(qū)動(dòng)了寒武紀(jì)環(huán)境變革”這一長期懸而未決的問題,也進(jìn)一步證明了地球深部活動(dòng)(俯沖與弧火山作用)、地表風(fēng)化過程、海水地球化學(xué)與生命演化的緊密聯(lián)系,為學(xué)界深入理解地球系統(tǒng)各圈層如何協(xié)同打造地球宜居性這一地球科學(xué)前沿研究提供了新的案例。目前,該研究已在線發(fā)表在國際知名期刊Nature?Communications,論文第一作者為廣州地化所伍耀文博士,廣州地化所田輝研究員和地化所樊海峰研究員為論文通訊作者,廣州地化所李杰正高級(jí)工程師指導(dǎo)了Re-Os同位素測試。該研究受國家自然科學(xué)基金和重點(diǎn)研發(fā)計(jì)劃聯(lián)合資助。
論文信息:
Yaowen Wu,?Hui Tian*,?Haifeng Fan*, Philip A. E. Pogge von Strandmann, Wei Zhao, Jie Li, He Sun, Haiou Gu, Chaojin Lu, Xianyi Liu, Tengfei Li, Sui Ji & Ping’an Peng, 2025. Enhanced erosion by continental arc volcanism as a driver of the Cambrian Explosion.?Nature Communications 16,?9204.?DOI: 10.1038/s41467-025-64253-w.

圖1?約560–510 Ma期間的構(gòu)造運(yùn)動(dòng)、磷塊巖分布、同位素地球化學(xué)記錄(δ13Ccarb-Os-Sr-Li)與生物多樣性模式關(guān)系圖。a:本研究及前人報(bào)道的Os同位素記錄(Xu et al., 2011; Fu et al., 2016);b:匯總的Sr同位素記錄(Derry et al., 1994; Brasier et al., 1996; Kaufman et al., 1996; Kaufman et al., 2007);c:大陸弧長度、俯沖帶長度(Mills et al, 2017)、LIPs (Ernst et al., 2021) 以及弧巖漿活動(dòng)記錄(Zhu et al., 2012; Brown et al., 2020; Oriolo et al., 2021);d:鉆孔ZK4803碳酸鹽巖樣品的Li同位素記錄。紫色線顯示使用局部加權(quán)散點(diǎn)平滑法得到的最佳估計(jì)曲線,其95%置信區(qū)間以灰色區(qū)域表示;e:?全球尺度磷塊巖礦床估算的P2O5噸位(Cook and Shergold,1984) 以及海水Ca2+濃度演化(Horita e al., 2002;?Brennan et al., 2004);f?:全球范圍內(nèi)的門和綱級(jí)生物數(shù)量(Erwin et al., 2011);g:碳酸鹽δ13Ccarb記錄(Zhu et al., 2006)。

圖2?俯沖和弧火山驅(qū)動(dòng)的風(fēng)化和海水化學(xué)演化三階段模型圖。a:約550–540 Ma:俯沖驅(qū)動(dòng)的加厚地殼發(fā)生一致風(fēng)化;b:約540–525 Ma:與巖漿弧相關(guān)的新鮮巖石侵蝕作用增強(qiáng),促進(jìn)了生物必需營養(yǎng)元素(如磷、鈣)向全球海洋的快速輸送;c:約525–515 Ma:轉(zhuǎn)變?yōu)榇箨懙貧さ牟灰恢嘛L(fēng)化,伴隨次生粘土形成,以及由此產(chǎn)生的粘土-有機(jī)碳高效埋藏和氧氣積累。
?
?
主要參考文獻(xiàn):
Brennan, S. T., Lowenstein, T. K. & Horita, J. Seawater chemistry and the advent of biocalcification. Geology 32, 473 (2004).
Brasier, M. D., Shields, G., Kuleshov, V. N. & Zhegallo, E. A. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–early Cambrian of southwest Mongolia.Geol. Mag. 133, 445–485 (1996).
Brown, D. A., Hand, M., Morrissey, L. J. & Goodge, J. W. Cambrian eclogite-facies metamorphism in the central Transantarctic Mountains, East Antarctica: Extending the record of early Palaeozoic highpressure metamorphism along the eastern Gondwanan margin. Lithos 366, 105571 (2020).
Cook, P. J. & Shergold, J. H. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature 308, 231–236 (1984).
Derry, L. A. et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the‘Cambrian explosion’. Earth Planet. Sci. Lett. 128, 671–681 (1994).
Ernst, R. E. et al. Large igneous province record through time and implications for secular environmental changes and geological time-scale boundaries. In: Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes 1–26 (2021).
Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).
Fu, Y. et al. New Re-Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang formation. J. Earth Sci. 27, 271–281 (2016).
Horita, J., Zimmermann, H. & Holland, H. D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66, 3733–3756 (2002).
Kaufman, A. J. et al. Integrated chronostratigraphy of Proterozoic–Cambrian boundary beds in the western Anabar region, northern Siberia. Geol. Mag. 133, 509–533 (1996).
Mills, B. J. W., Scotese, C. R., Walding, N. G., Shields, G. A. & Lenton, T. M. Elevated CO2 degassing rates prevented the return of Snowball Earth during the Phanerozoic. Nat. Commun. 8, 1110 (2017).
Oriolo, S. et al. Early Paleozoic accretionary orogens along the Western Gondwana margin. Geosci. Front. 12, 109–130 (2021).
Wotte, T. et al. C-, O- and Sr-isotope stratigraphy across the Lower–Middle Cambrian transition of the Cantabrian Zone (Spain) and the Montagne Noire (France), West Gondwana. Pa. laeogeogr. Palaeoclimatol. Palaeoecol. 256, 47–70 (2007).
Xu, L. et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China—a reassessment. Econ. Geol. 106, 511–522 (2011).
Zhu, D.-C. et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chem. Geol. 328, 290–308 (2012).
Zhu, M.-Y., Babcock, L. E. & Peng, S.-C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15, 217–222 (2006).
附件下載:

